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1. Introduction 

1.1. Purpose 
Regression for M&V: Reference Guide (Regression Guide) as a complement to the Measurement 
and Verification (M&V) protocols used by the Bonneville Power Administration (BPA). It 
assists the engineer in conducting regression analysis to control for the effects of changing 
conditions (such as weather) on energy consumption. 

Originally developed in 2012, this Regression Guide is one of ten documents produced by BPA 
to direct M&V activities; an overview of the ten documents is given in the Measurement and 
Verification (M&V) Protocol Selection Guide and Example M&V Plan (Selection Guide).  

Chapter 8 of this guide provides full citations (and web locations, where applicable) of 
documents referenced and an appendix provides a glossary specific to this guide. 

1.2. Protocols Version 2.0 
BPA revised the protocols described in this guide in 2018. BPA published the original 
documents in 2012 as Version 1.0. The current guides are Version 2.0.  

1.3. How is M&V Defined? 
BPA’s Implementation Manual (the IM) defines measurement and verification as “the process 
for quantifying savings delivered by an energy conservation measure (ECM) to demonstrate how 
much energy use was avoided. It enables the savings to be isolated and fairly evaluated.” 

0F

1 The 
IM describes how M&V fits into the various activities it undertakes to “ensure the reliability of 
its energy savings achievements.” The IM also states: 

The Power Act specifically calls on BPA to pursue cost-effective energy efficiency that is 
“reliable and available at the time it is needed.”1F

2 […] Reliability varies by savings type: 
UES, custom projects and calculators.2F

3,
3F

4 Custom projects require site-specific 
Measurement and Verification (M&V) to support reliable estimates of savings. BPA 

                                                 
1  2017-2019 Implementation Manual, BPA, October 1, 2017. 

https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf  
2  Power Act language summarized by BPA. 
3  UES stands for Unit Energy Savings and is discussed subsequently. In brief, it is a stipulated savings value 

that region’s program administrators have agreed to use for measures whose savings do not vary by site (for 
sites within a defined population). More specifically UES are specified by either the Regional Technical 
Forum – RTF (referred to as “RTF approved”) or unilaterally by BPA (referred to as BPA-Qualified). 
Similarly, Savings Calculators are RTF approved or BPA-Qualified. 

4  Calculators estimate savings that are a simple function of a single parameter, such as operating hours or run 
time. 

https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf
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M&V Protocols direct M&V activities and are the reference documents for reliable 
M&V. For UES measures and Savings Calculators, measure specification and savings 
estimates must be RTF approved or BPA-Qualified.4F

5 

The Selection Guide includes a flow chart providing a decision tree for selecting the M&V 
protocol appropriate to a given custom project and addressing prescriptive projects using UES 
estimates and Savings Calculators.  

M&V is site-specific and required for stand-alone custom projects. BPA’s customers submit 
bundled custom projects (projects of similar measures conducted at multiple facilities) as either 
an M&V Custom Program or as an Evaluation Custom Program; the latter requires evaluation 
rather than the site-specific M&V that these protocols address. 

1.4. Background 
BPA contracted with a team led by kW Engineering, Inc. to assist the organization in revising the 
M&V protocols that were published in 2012 and used to assure reliable energy savings for the 
custom projects it accepts from its utility customers. The team conducted a detailed review and 
user assessment of the 2012 M&V Protocols and developed the revised version 2.0 under 
Contract Number 00077045. 

The kW Engineering team is comprised of: 

■ kW Engineering, Inc. (kW), led by David Jump, Ph.D., PE, CMVP 

■ Research into Action (RIA), led by Marjorie McRae, Ph.D. 

■ Demand Side Analytics (DSA), led by Jesse Smith 

BPA’s Todd Amundson, PE and CMVP, was project manager for the M&V protocol update 
work. The kW Engineering team compiled feedback from BPA and regional stakeholders, and 
the team’s own review to revise and update this 2018 Regression Guide.5F

6 The kW Engineering 
team would also like to thank Gregory Brown of Brolte, LLC and Josh Rushton of Rushton 
Analytics for their input. 

                                                 
5  https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf, page 1. 
6  William Koran, formerly of QuEST, was the primary author of Version 1.0 of the Regression Guide, under 

Todd Amundson’s direction and supported by other members of the protocol development team. 
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2. Overview of Regression 

2.1. Description 
Regression is a statistical technique that estimates the dependence of a variable of interest (such 
as energy consumption) on one or more independent variables, such as ambient temperature. A 
regression model estimates the effects on the dependent variable of changes in a given 
independent variable, controlling for the influence of other variables. It is a powerful and flexible 
technique that can be used in a variety of ways when measuring and verifying the impact of 
energy efficiency projects.  

This protocol assumes the use of ordinary least squares (OLS) regression. OLS is the most 
common form of regression modeling and the default approach in most software packages. OLS 
is a mathematical procedure to solve for the set of coefficients that minimize the sum of the 
squared differences between the raw data and the fitted linear trend. There are many other forms 
of regression modeling, but they are outside the scope of this protocol. 

These guidelines are intended to provide energy engineers and M&V practitioners with a basic 
understanding of the relevant statistical measures and assumptions necessary to properly use 
regression analysis. The guidelines should be followed whenever the technique is required. 
While this is not a comprehensive guide to regression, following the approaches described here 
should make most M&V regressions valid for their intended purposes. Please refer to a textbook 
for more comprehensive information. 

Many sources offer additional information on regression analysis. Resources that may be 
valuable references for energy efficiency M&V practitioners engaged in regression modeling 
include the following: 

■ IPMVP: International Performance Measurement and Verification Protocol: Concepts 
and Options for Determining Energy and Water Savings, Volume 1 (IPMVP, 2012) and 
Core Concepts (IPMVP, 2016)6F

7 

■ ASHRAE Guideline 14-2014 – Measurement of Energy, Demand, and Water Savings7F

8  

■ California Commissioning Collaborative’s Guidelines for Verifying Existing Building 
Commissioning Project Savings, Using Interval Data Energy Models: IPMVP Options B 
and C8F

9  

                                                 
7  See especially Uncertainty Assessment, IPMVP. 
8  Annex B, Determination of Savings Uncertainty, and Annex D, Regression Techniques, have information 

very relevant to regression analysis. 
9  This is a relatively easy-to-read document that focuses on regression methods. Although written with a focus 

on commissioning of existing buildings, the methods described are applicable to a variety of projects. 
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In addition to these documents, a general reference for exploratory data analysis and statistical 
inference, the NIST/SEMATECH Engineering Statistics Handbook, is available online from the 
National Institute of Standards and Technology. The Engineering Statistics Handbook site 
includes a detailed table of contents for the web-based handbook, and also includes 
downloadable PDF files for off-line reading. 

2.2. Regression Applicability 
Regression estimation is useful when a simple spot measurement is not adequate to establish the 
baseline energy use. It is applicable when the energy use affected by the efficiency measure is 
correlated to one or more independent variables. Note that the technique of energy indexing is a 
simple application of the regression guide that can be used when energy use is linearly 
proportional to one normalizing (independent) variable. There are other constraints upon using 
energy indexing in lieu of a more generalized approach. Please refer to BPA’s Verification by 
Energy Use Indexing Protocol for further information on this technique. 

In M&V, energy usage is typically (and optimally) the dependent variable, whether energy usage 
is measured monthly through bills or measured more frequently through meter monitoring. The 
regression model attempts to predict the value of the dependent variable based on the values of 
independent, or explanatory, variables such as weather data.  

 Dependent Variable – the outcome or endogenous variable; the variable described by 
the model; for M&V, the dependent variable is typically energy use 

 Independent Variable – an explanatory or exogenous variable; a variable whose 
variation explains variation in the outcome variable; for M&V, weather characteristics 
are often among the independent variables 

 Simple Regression – a regression with a single independent variable 

 Multiple Regression – a regression with two or more independent variables 

One of the most common applications of regression in M&V is to understand the factors that 
influence monthly utility consumption. The initial step is to establish the baseline dependence of 
building energy usage on weather conditions and other independent variables (for example, 
occupancy and production) by modeling the period prior to the retrofit that is illustrative of pre-
retrofit usage – the baseline period. Then, post-retrofit independent variables are applied to the 
baseline model to estimate the building’s energy use had the energy efficiency improvements not 
been made (the counterfactual situation). In M&V, this projection of the baseline energy use into 
the post period is typically called the adjusted baseline. Finally, the adjusted baseline (predicted 
counterfactual energy use) is compared to the actual post-retrofit energy use and the difference 
provides an estimate of energy savings.9F

10 

                                                 
10  Note that this is the general approach followed by most M&V practitioners to estimate energy savings. 

Economists, who typically conduct impact evaluations, typically estimate a single model from both baseline 
and post-retrofit data, and use a dummy (categorical) variable applied to post-retrofit observations to 
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When available, the practitioner can use more granular independent variable data to model 
energy with a much smaller time interval than a monthly billing period, such as hourly, daily or 
weekly data. These smaller interval data are frequently applicable to IPMVP Options A (Key 
Parameter Measurement), B (All Parameter Measurement), and C (Whole Facility), and can also 
be used to assist in model calibration for IPMVP Option D (Calibrated Simulation). 

2.3. Advantages of Regression 
Regression is a very flexible technique that can be used in conjunction with other M&V methods 
to help provide a deeper understanding of how and when energy is used. The ideal case for 
regression is when the measurement period captures the full annual variation in the dependent 
and independent variables – that is, the full range of operation conditions. If the relationship 
between the independent and dependent variables is not expected to change over the range of 
operating conditions, then short-term measurements can be extrapolated to annual energy use, 
even if the measurement period does not capture the full annual variation. 

Regression not only facilitates an estimate of energy savings, but also can provide an estimate of 
the uncertainty in savings calculations. Further, a baseline regression model can be used to 
estimate how much data is required in the post-retrofit period to keep savings uncertainty below 
a desired threshold.  

Regression is conceptually simple. Most M&V practitioners have at least a basic familiarity with 
regression analysis. Further, usage and weather data – the variables typically needed for a basic 
model – usually are readily available. 

2.4. Disadvantages of Regression 
Although simple in concept, proper use of regression requires a clear understanding of statistical 
methods and application guidance, which this document seeks to provide to the M&V 
practitioner. The information in this guide should be relevant to most M&V projects, but 
situations can occur that require a more detailed understanding of statistical methods. While the 
basic technique is straightforward, complications to the site or the data can easily require more 
advanced techniques and a more thorough understanding of regression methods than this 
document can provide. 

Regression models require multiple observations on the dependent and independent/explanatory 
variables. There are times, however, when explanatory variables are not readily available, or we 
only have access to proxies. Explanatory variables omitted from a regression model typically 
introduce error. If energy use is not a strong function of the independent variable(s) in the 
equation, or if there is large variability in energy use relative to strength of the predictive 
relationship (“scatter” in the x-y chart; discussed in Section 3.3 and 3.4), regression analysis 
generates estimates that have high uncertainty. 

                                                 
estimate energy use savings. The resulting savings estimates are comparable to the approach described 
here, although not necessarily identical. 
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2.5. Consider Uncertainty when Choosing to Use 
Regression Analysis  

The relative precision – or fractional savings uncertainty (FSU) – of an energy savings estimate 
is the magnitude of the uncertainty relative to the estimate of annual savings.10F

11 (Note that the 
savings need not be annual – perhaps they are just the savings achieved through the reporting 
period to date. The formulas just need to be used accordingly.) If a project is expected to save 
300,000 kWh per year and the uncertainty – or margin of error – is ± 75,000 kWh/year, the 
relative precision of the estimate is ± 25%. The Verification by Energy Modeling and 
Verification by Energy Use Indexing protocols include guidance for calculating the expected 
uncertainty using baseline data. The key drivers of relative precision are: 

1. The size of the signal – it is easier to precisely measure large effects than small effects. 
Savings uncertainty is not a function of expected savings, but the ability of the model to 
explain variation in observed usage. 

2. Amount of noise in the data – it is easier to precisely measure effects when much of the 
variation in pre-installation energy consumption is explained by known independent 
variables like weather or production. Savings from projects in facilities with noisy, or 
erratic, load patterns will be more uncertain than projects in facilities with more 
predictable load patterns. 

3. The frequency of the data – it is easier to precisely measure effects with daily or hourly 
energy usage data than with monthly data. However, because autocorrelation distorts the 
information coming from traditional statistical calculations, the practitioner using hourly 
or sub-hourly data will need to take additional modeling steps to produce unbiased 
estimates of uncertainty than is necessary with lower frequency data.  

The larger the signal, the less the noise, and the higher the frequency of the data each increase 
the likelihood that Energy Modeling or Energy Indexing will be an appropriate M&V approach. 

Practitioners should be mindful of relative precision before selecting a regression-based protocol. 
If the expected relative precision (or FSU) of a project savings estimate is greater than ± 50%, an 
alternative protocol could be more appropriate. It is common to find uncomfortably high relative 
precision estimates for projects expected to save less than 5% of facility energy use. End-use 
metering may be able to isolate the affected end-use(s) within a facility and significantly reduce 
the amount of noise in the data being modeled (without changing the size of the expected effect). 

 

                                                 
11  ASHRAE. 2014. ASHRAE Guideline 14-2014 – Measurement of Energy, Demand, and Water Savings. 

Atlanta, Ga.: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 
https://www.techstreet.com/standards/guideline-14-2014-measurement-of-energy-demand-and-water-
savings?product_id=1888937, sec. B4, p. 88 describes fractional savings uncertainty (FSU). 
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3. The Regression Process 
The regression process can be summarized in seven steps, discussed in detail in the following 
sections: 

1. Identify all independent variables to be included in the regression model 

2. Collect the data 

3. Clean the data 

4. Graph the data 

5. Select and develop the regression model 

6. Validate the model 

7. Analyze the residuals of the model11F

12 

Note that for ordinary linear regression to be an appropriate analysis method, the following 
conditions must be met: 

1. The modeler should be able to reasonably explain the relationship between the dependent 
and independent variable(s) prior to performing any regression analysis. 

2. The relationship between the dependent variable and all independent variables in the 
model (except for indicator variables)12F

13 should be approximately linear. 

3. The model residuals must follow an approximate Normal distribution with a mean of zero 
and a constant variance (a condition termed homoscedasticity).  

4. The model residuals model must be uncorrelated with each of the independent variables 
in the regression model. 

5. The model residuals must be independent. That is, the residual at time 𝑡𝑡 must not be 
correlated with the residual at time 𝑡𝑡 − 1 or at any other time period. 

Condition 2, self-explanatory for linear regression, is nonetheless discussed in slightly more 
detail in Section 3.4; conditions 3-5 are discussed in greater detail in Section 3.7 and Section 5.4. 

                                                 
12  Model residuals are the differences between the actual and predicted values. 
13  An indicator variable is a binary variable that indicates the presence or absence of some categorical 

condition expected to shift the outcome.  
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3.1. Step 1 - Identify All Independent Variables 
To properly identify all independent variables, you should consider the facility and how different 
factors play into its energy use. Then, you will compile a list of the variables that are likely to 
have an impact on the energy use of the facility or system being modeled. When independent 
variable values are not numeric or are not continuous, the data can be separated into several 
regression models, rather than including all variables within a single model. For example, 
separate regression models may be developed for a food processing facility with distinct on- and 
off-season production operating modes, resulting in better estimation of baseline energy usage 
compared to a single model. 

Developing separate models is just one approach to working with categorical variables, an 
approach favored by many M&V practitioners. One can also use binary variables to indicate the 
presence or absence of a given condition (that is, to create a category) and apply these binary 
variables to develop estimates of either the slope or the intercept, or both, when the given 
condition is satisfied. (See Section 4.4.1 for a discussion of the use of categorical variables.) 

We advise caution when including many variables. A model should only use the variables that 
explain the relationship and not include additional, extraneous information. ASHRAE 
Guideline 14, Appendix D, provides additional information on regression estimation with two or 
more independent variables (multiple regression). 

Some independent variables commonly used in energy regressions are: 

 Ambient dry bulb temperature (actual or averaged over a time-period such as a day) 

 Heating degree-days (HDD: See Section 6.2)  

 Cooling degree-days (CDD: See Section 6.2) 

 Plant output (number of widgets produced in some period) 

 Number of occupants in a facility each hour 

3.2. Step 2 - Collect Data 
Prior to installation of the measure, identify and collect data for a monitoring period that is 
representative of the facility, operation, or equipment. This is the baseline period, sometimes 
referred to as the tuning or pre-period. To provide accurate predictions, the sample of data used 
to estimate a regression model should be representative of the full range of operating conditions. 
That is, the baseline monitoring period should be long enough to provide “coverage” of the full 
range of operating conditions. For example, when analyzing savings for a weather-sensitive 
measure, the baseline period typically includes 12 or 24 months of consumption data so that the 
relationship between energy usage and weather can be observed across a full range of annual 
temperature conditions.  

Using consumption data over a partial year may lead to poor predictions for weather conditions 
that were not observed in the baseline period. For example, if the baseline period spans from 
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October to April, the baseline period model will not have coverage of hot summer weather 
conditions. Consequently, the model will have to predict out-of-sample to estimate energy usage 
on a 95-degree day in July. Predicting out-of-sample refers to predictions that are outside of the 
range of the independent variables used in the regression model.  

3.3. Step 3 - Clean the Data 
It is vital that the collected baseline data accurately represent the operation of the facility or 
system before improvements were made. Anomalies in the data can have a large effect on the 
outcome of the analysis. Thus, after collecting the baseline data (for the dependent variable of 
interest and any relevant independent variables), one should spend some time reviewing and 
“cleaning” the data.13F

14 Data cleaning efforts, which should be conducted on both the baseline 
period data and the reporting period data, typically include: 

 Examine data outliers. Identify data points that do not conform to the distribution 
observed for most of the data and seek an explanation for their unusual values. Atypical 
events that result in outliers include equipment failure, situations resulting in abnormal 
facility closures, and malfunctioning of the metering equipment. Truly anomalous data 
should be documented and then removed from the data set, as they do not describe the 
facility or system. 

 Make any adjustments related to non-routine events. Non-routine events include 
renovations, facility expansion, equipment addition or removal, changes to occupancy 
type or schedule, and other one-time only or infrequent events. For a discussion of how to 
make non-routine event adjustments, refer to Section 3.1.7 of the Verification by Energy 
Modeling Protocol. 

 Identify and address missing data values. If there are large gaps in the data, seek an 
explanation and/or alternative data sources, such as a nearby weather station. If data are 
missing for a relatively small set of observations, they should be filled in. The 
practitioner can fill in a handful of missing hourly temperature values, for example, via 
simple averaging (taking the average of the previous reading and the next reading). A 
more robust approach, appropriate for more than a handful of missing observations, is to 
interpolate the values via regression modeling (that is, creating a regression model to 
predict the missing values).  

 De-duplicate the data. Utility billing and interval data can be susceptible to duplication. 
For example, you might have two records for the hour ending 10:00 AM. Those two 
records could be exact duplicates, or they might differ slightly. If possible, determine 
why the duplication occurred. Regardless, you will want to eliminate records for the same 

                                                 
14  The timing of data cleaning by engineers and by economists commonly diverges. Economists typically 

collect and clean both the baseline and the post-installation data as part of Step 2 and conduct the 
subsequent steps on the entire pre- and post-period. Engineers typically collect, clean and model baseline 
data and then turn to the post-installation data. 
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timestamp. If the records are indeed exact duplicates, just drop one of the records. If one 
record is 0 kW and another has a non-zero value, drop the 0 kW record (assuming an 
actual read of 0 kW is atypical). If the two records have the same timestamp but different 
kW values, perhaps take the average. 

 Convert all data sources to a common time zone. If you intend on using weather data 
in your analysis, it is critical that the time zone of the weather data matches the time zone 
of the consumption/demand data (and any other data used in the analysis). Also, be 
mindful of records that could be affected by daylight savings time. 

 Standardize all measurements to a common time unit. The observation interval must 
be consistent across all variables. For example, a regression model using monthly utility 
bills as the outcome variable requires that all other variables originally collected as 
hourly, daily, or weekly data be converted into monthly data points. In such a case, it is 
common practice to average (or, if more appropriate, sum) points of daily data over the 
course of a month, yielding synchronized monthly data. When working with monthly 
data, practitioners are encouraged to use daily averages rather than monthly sums, as the 
number of days in each month varies. 

 Examine scatterplots of the dependent variable versus each independent variable to 
determine if any regression outliers are present. Most commonly, one graphs the 
independent variables on the X axis and the dependent variable on the Y axis. A 
“regression outlier” is a point in the scatterplot that does not fit the overall trend. Such 
outliers pull the estimated regression model in their direction, likely leading to a worse 
overall fit (and worse fit statistics like root mean squared error (RMSE) and R2, discussed 
further in Section 5).  

Seek an explanation for the occurrence of any regression outliers and remove them if they 
are truly anomalous data points, not representative of operating conditions. As an 
alternative to removing the outliers, the practitioner could employ a regression approach 
that reduces the impact of outliers, such as one based on the mean absolute error. 

Figure 3-1 shows an example of a scatter plot of monthly MWh and the number of 
widgets produced per month. Note that there is an overall linear trend, but there is one 
regression outlier (in red). Also note that this regression outlier is not necessarily an 
outlier in terms of monthly MWh or number of widgets produced – it only stands out 
when the two variables are compared. The dotted linear trend line describes the full data 
set and is pulled in the direction of the outlier. The solid linear trend line describes the 
relationship without the regression outlier and does a better job of capturing the overall 
linear trend.  
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Figure 3-1: Regression Outlier 

 

3.4. Step 4 - Graph the Data 
Though subsumed in the previous step, graphing the data warrants a step of its own, as one of the 
key requirements for using a linear regression model concerns the relationship between the 
dependent variable and the independent variable(s). For linear regression to be a valid, defensible 
approach, a scatter plot between the dependent variable and the independent variable(s) must 
show an approximate linear trend. This requirement is the pillar of linear regression modeling. 
Practitioners should examine scatter plots between the dependent variable and each of the 
independent variables used in the model. As an example, Figure 3-1 illustrates a scatter plot for 
the linear relationship between monthly energy consumption and the number of widgets 
produced per month (with the dependent variable graphed on the Y axis). 

When a scatterplot shows multiple distinct linear trends, it is important to investigate whether 
those trends correspond with a data category. Common examples include weekday vs. weekend 
load patterns and occupied vs. unoccupied operating hours. Section 3.2.2 of the Verification by 
Energy Modeling Protocol includes detailed guidance about using categorical variables in 
regression models. 

Indicator variables, commonly used in regression analysis, are binary (0, 1) categorical values 
that indicate presence or absence of a condition expected to shift the outcome. Note that a scatter 
plot between the dependent variable and any indicator variables will not show much of the trend 
since the indicator variable takes only one of two values. Still, the use of indicator variables is 
encouraged, especially if they make a statistically significant contribution to dependent variable 
prediction. The concept of statistical significance is discussed in slightly more detail in Section 
5.2.3. 
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3.5. Step 5 - Select and Develop Model 
After verifying that the relationship between the dependent variable and the independent 
variable(s) is approximately linear, one can begin developing regression models. To create a 
baseline equation, perform a regression analysis on the measured variables.  

The equation calculated from the regression analysis represents the baseline relationship between 
the variables of interest. Figure 4-1 in Section 4.2 shows the data and the model estimated for the 
value of the outcome variable as a function of one independent variable – a simple regression.  

Frequently, however, more than one independent variable influences the outcome variable. For 
example, the electricity used by a chiller system might be affected by variations in outside 
temperature, relative humidity, hours of facility use, and number of occupants. To accurately 
model cooling energy consumption, we need to include multiple independent variables, creating 
a multiple regression model. Subsequent sections provide more detailed explanations of model 
development, with examples of multiple regression analysis given in Section 4.4. 

3.6. Step 6 - Validate Regression Model 
Once you have created as baseline (or pre-post) model, there are statistics you should calculate 
(or, more appropriately, have software calculate for you) to assess (1) whether or not your 
independent variables make significant contributions to the prediction of your dependent 
variable, (2) the goodness-of-fit of your model, and (3) the accuracy of your model. These 
statistics will be noted here and discussed in greater detail in later sections.  

To assess the significance of contributions made by independent variables, some relevant 
statistics are: 

 F-statistic – Section 5.1.7 

 t-Statistics – Section 5.2.2 

 p-values – Section 5.2.3 

To assess model goodness-of-fit, some relevant statistics are: 

 R2 – Section 5.1.1 

 Adjusted R2 – Section 5.1.1 

To assess model accuracy, some relevant statistics are: 

 Root Mean Squared Error (RMSE) – Section 5.1.4 

 CV(RMSE) Coefficient of Variation of the Root Mean Squared Error – Section 5.1.5 

 Net Determination Bias – Section 5.1.6 

For multiple regression models, it’s also advisable to examine variance inflation factors (VIFs). 
VIFs can identify whether or not multicollinearity (which occurs when the independent variables 
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are strongly correlated with each other) is a concern. Multicollinearity and VIFs are discussed in 
greater detail in Section 5.1.8. 

Another popular approach to testing the accuracy of a regression model is called out-of-sample 
testing. This entails splitting your original data set into a training and a testing data set (the 
training data set is typically larger). The practitioner uses the training data set to create the 
regression model and uses the testing data set to test the accuracy of the model (that is, compare 
predicted values to actual values). Out-of-sample testing is commonly used iteratively via a 
technique called Monte-Carlo cross-validation. Section 5.3 discusses out-of-sample testing in 
greater detail. 

3.7. Step 7 - Analysis of Residuals 
It is rare for a regression model to make predictions that are correct 100% of the time. There is 
generally a difference between the predicted values and the actual, observed values. This 
difference is referred to as the residual (where residual = actual value – predicted value). Several 
of the key assumptions made when fitting an OLS (linear) model concern the distribution of the 
residuals. Namely, the residuals must meet the following conditions: 

1. Residuals must follow an approximate Normal distribution with a mean of zero. 

2. Residuals must have a constant variance (referred to as homoscedasticity). That is, 
residuals should not be larger or smaller as the independent variable(s) increases. 

3. Residuals must not be correlated with any of the independent variables or the predicted 
values of the dependent variable. 

4. Residuals must be independent of each other. In other words, the residual at time t must 
not be correlated with the residual at time t – 1 (or any other period). This type of 
correlation is referred to as autocorrelation and/or serial correlation. 

It is essential for the practitioner to check whether these conditions are met. If these conditions 
are violated, then conclusions drawn from the regression model could be incorrect. Performing a 
residual analysis can also help to identify any regression outliers that might have been 
overlooked. The discussion on residual analysis is continued in Section 5.4. There, the reader can 
find several methods for checking the conditions noted above. 
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4. Models 
This chapter describes types of linear regression models that are commonly used for M&V. 
Spreadsheets and statistical software can create simple and multiple regressions – the models 
most commonly used in M&V, as discussed below. These tools can also develop second-order or 
higher polynomial functions, logistic regressions, and other types of models, which can be 
appropriate in certain circumstances. The M&V practitioner should always graph the data in a 
scatter chart (Step 4 in the process) to verify the type of curve that best fits the data. 

The ASHRAE Inverse Model Toolkit (ASHRAE RP-1050) is a useful tool for automating the 
creation of the various model types described below.  

4.1. One Parameter Model (Mean Model)  
Single parameter (1P), or mean models, estimate the mean of the dependent variable and are the 
simplest models described in this guide. They are not really regression models but are included 
here for completeness. A mean model would describe energy use that is not related to other 
independent variables, such as that of a light that runs continuously. 

4.2. Two Parameter Model (Simple Regression) 
Two parameter (2P) models are the simple linear regression models with which most M&V 
practitioners are familiar. They are appropriate for modeling building energy use that varies 
linearly with a single independent variable, such as ambient temperature. In most commercial 
buildings, metered whole-building energy use varies linearly with ambient temperature above 
75º F due to changes in cooling energy use. 

A linear least squares regression with only two parameters is often called a simple regression. 
The equation below is the standard form of a simple regression, illustrated in Figure 4-1 with 
actual building data. 

■ Simple Regression: Y = β1 + β2 X1 

where: Y = the value of the dependent variable  

 β1 = the parameter that defines the y-intercept (the value of y when x equals 
zero)  

 β2  = the parameter that describes the linear dependence on the independent 
variable (slope)  

 X1  = the value of the independent variable  
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(Note that statisticians typically describe this model as 0 1 1Y Xβ β= + . In this text, we use 
the former notation, as it is consistent with the common engineering terminology two 
parameter model.) 

The following graph is an example of a simple regression. 

Figure 4-1: Electrical Demand vs. Ambient Temperature 

 

4.3. Simple Regression Change-Point Models 
Some systems are dependent on a variable, but only above or below a certain value. For 
example, cooling energy use may be proportional to ambient temperature, yet only above a 
certain threshold. When ambient temperature decreases to below the threshold, the cooling 
energy use does not continue to decrease, because the fan energy remains constant. In 
commercial buildings with economizer cooling, this threshold is often 55º F. Similar behavior is 
often seen in building gas usage, because the heating energy is proportional to ambient 
temperature during the space heating season and the energy associated with hot water use is 
constant across all seasons. 

In cases like these, simple regression can be improved by using a change-point linear regression. 
Change point models often have a better fit than a simple regression, especially when modeling 
energy usage for a facility. Because of the physical characteristics of buildings, the data points 
have a natural 2-line angled pattern to them, that is, display a linear relationship that changes 
(has a different slope) at a given point. Sometimes it is even appropriate to use multiple change 
points.  
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The practitioner interested in estimating change-point models should consult BPA’s Verification 
by Energy Modeling Protocol, Chapter 3, for a complete discussion of change-point models.  

4.4. Multiple Regression 
The simple regression and change-point models discussed thus far have all used a single 
independent variable. Of course, for many building systems, energy use is dependent on more 
than one variable. In such cases, single variable models will typically result in low R2

 values. 
When using only one independent variable, the equation has only limited ability to predict the 
dependent variable, because it does not account for other key factors that should be present in the 
model.  

In such cases, including other variables that are known to influence energy usage will provide a 
more accurate model. Commonly used variables whose variation is related with variation in 
energy use include: hours of occupancy in buildings, number of employees on given day, meals 
served at a restaurant, amount of conditioned floor space, equipment or appliances in use, and 
water usage. Including two or more independent variables produces a multiple regression model.  

Simple regression can be visualized as fitting a line. Multiple regression models with two 
independent variables fit a plane, and a three-variable model fits a 3-dimensional space. The 
general format of the model is. 

■  Y = β1 + β2 X1 + β3 X2 + β4 X3 + … + βi X i-1 

where:  i = the number of predictors 

Note that in common statistics terminology, multiple regression typically refers to regression 
models with two or more independent variables and a single dependent variable. In multivariate 
regression, by contrast, there are multiple dependent variables and any number of predictors. The 
ASHRAE Inverse Model Toolkit refers to multiple regression models and change-point models 
with multiple independent variables as multiple-variable or multi-variable models. 

Note that additional independent variables will always improve the model’s fit (as measured by 
R2) regardless of whether or not those variables help in the prediction of observed usage. 
However, this does not necessarily mean that the model is improved. With multiple regression 
models, practitioners should refer to adjusted R2 rather than R2. The “adjusted” version of this 
statistic essentially attaches a penalty for each additional explanatory variable in the model. See 
Section 5.1.2 for more discussion on adjusted R2. 

4.4.1. Categorical Variables 
Energy use modeling can account for change of states (broadly, the influence of categorical 
variables, defined and discussed in this section) by estimating separate models for each state, 
estimating a single model with categorical variables, and estimating change-point models (a 
specific form of a model with categorical variables, described in the previous section). Most 
energy models for M&V will have only one continuous independent variable but may also 
incorporate categorical variables.  
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Variables can be divided into two general types: continuous and categorical. Continuous 
variables are numeric and can have any value within the range encountered in the data. 
Continuous variables are either interval or ratio numbers (where a value of 10 is twice the 
magnitude as a value of 5). Continuous variables are measured things, such as energy use or 
ambient temperature. Categorical variables include things like daytype (weekday or weekend, or 
day of week), occupancy (occupied or unoccupied), and equipment status (on or off). As 
examples, occupancy status is a categorical variable, while number of occupants is a continuous 
variable.  

For use in a regression analysis, any categorical variable must be expressed in a binary form, 
such as taking the value of 1 for Monday and taking the value of 0 for all other days. This is 
because all the variables in a regression model must be linearly related to the dependent variable. 
A conceptual category such as day-of-week therefore cannot be included in a regression if it 
takes values such 1 for Monday, 2 for Tuesday, on up through 7 for Sunday; Tuesday does not 
have twice the impact on the dependent variable than Monday, nor does Wednesday have three 
times the impact. 

As mentioned at the end of the prior section, one needs to take care in adding additional variables 
– such as multiple binary variables to describe a composite concept (such as day-of-week) – 
because the model can become over-specified, and the parameter estimates inaccurate and 
imprecise. Thus, when needing to create a set of binary variables to capture a composite 
categorical concept, the M&V practitioner should consider the most concise way to express the 
underlying relationships between these categories and the dependent variable. Continuing with 
the day of week example, it may be that activity ramps up during the week; appropriate 
categories might be Monday/Tuesday, Wednesday/Thursday/Friday, and Saturday/Sunday, 
where Mon_Tues has the value of 1 if the day is a Monday or Tuesday and 0 otherwise, and 
similarly for the other variables. 

Finally, when working with binary variables describing composite categories, the modeler 
includes one less binary variable in the equation than the total number of categories in the set. 
Continuing with the example, when the variables Mon_Tues and Wed_Thus_Fri both have the 
value of 0, the day must be a Saturday or Sunday; it would be redundant (that is collinear) to add 
the variable Sat_Sun. 

According to ASHRAE RP-1050, practitioners using categorical variables commonly err by 
inappropriately using them only to change the line’s intercept. The M&V practitioner needs to 
carefully consider whether the categorical variable is expected to affect the model’s intercept 
term, a slope term, or both. If the slope likely differs among categories, the model must include 
terms to capture the interaction of the categorical and continuous variable, which can be tedious 
and error-prone to accomplish in Microsoft Excel. (Another solution is to fit separate models for 
different levels of the categorical variable.) 

An appropriate statistical approach to apply with categorical variables is the General Linear 
Model (GLM). Multiple regression is typically used where the independent variables are 
continuous, but a general linear model can accommodate both categorical and continuous 
predictor variables. In avoiding the common pitfall of all categories having the same slope, it is 
important to use the proper GLM method. (Please refer to a statistics text for further discussion 
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of general linear models. Some resources are noted in the References and Resources section of 
this document.) 

Instead of using a multiple regression of the format in ASHRAE RP-1050, you can create 
separate models for each category or combination of categories, and then combine these 
individual models into a complete model. The basic process is similar to using IF statements to 
determine, for each data point, the category of the categorical independent variable, and then 
using the intercept and slope that are appropriate for that category.  

4.5. Uncertainty and Confidence Intervals 
4.5.1. Uncertainty 
Regression analysis yields estimates, predictions that will not be 100% accurate. Thus, modelers 
speak of the uncertainty of the estimates, that is, uncertainty in the predicted y-value. Uncertainty 
in regression analysis results from three principal sources: 

 Measurement uncertainty or measurement error, 

 Coverage error, and 

 Regression uncertainty or model uncertainty. 

Measurement Uncertainty 

Measurement uncertainty has two principal components: measurement bias and measurement 
precision. Bias relates to issues of calibration and accuracy; precision relates to the magnitude of 
random variation that occurs when multiple measurements are made. Figure 4-2 illustrates these 
concepts. The concept of measurement uncertainty as it relates to regression analysis pertains to 
the independent variables, as any measurement error in the dependent variable contributes to 
model uncertainty, with the error contributing to the model residual.  
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Figure 4-2: Accuracy vs. Precision 

 

Instruments for acquiring measurements should be of sufficient resolution and precision that the 
uncertainties in measurements are small relative to the regression uncertainty. Measurement bias 
due to measuring equipment error should be eliminated through calibration, and careful 
instrumentation design and installation should be used to minimize other measurement bias 
errors. Installation criteria for accurate measurement, such as the need for a straight duct of a 
specific number of equivalent duct diameters for a flow measurement, may be important. 

Note that, even though an installation limitation may introduce the same bias to the pre and post 
periods, the fact that the bias is the same may not mean that the savings estimate is not biased. 
Whether or not there is a savings bias is dependent upon the type of bias (that is, additive or 
multiplicative) and how the measurement is mathematically used. 

As applicable and possible, utility meters should be used for energy-use measurements. By 
M&V convention, utility meter data is considered to have zero uncertainty for savings estimates. 
Similarly, data from a nearby National Oceanic and Atmospheric Administration (NOAA) 
weather station should be used for weather measurements, but such measurements should be 
verified to be representative of the conditions at the treated building. NOAA sites are far less 
likely to have biases or inaccuracies due to solar effects and sensor calibration errors than site 
measurements. 

Specific to weather data, check for evidence of instrumentation changes over time. For example, 
one might take differences with nearby weather station data and plot over time. Some stations 
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may also document such changes. A change in a weather data measurement source during the 
baseline or post period may require: (1) the inclusion of an indicator variable for the effected 
period in the regression model, (2) a normalization of the weather data, or (3) a full update to the 
original energy model. 

For a thorough discussion of measurements, refer to Section 6, Instrumentation, and Annex A, 
Physical Measurements, within ASHRAE Guideline 14, Measurement of Energy, Demand, and 
Water Savings. 

Coverage Error 

Coverage error occurs when an M&V data set does not fully “cover” the range of conditions that 
drive energy use, which is the full range of building or system operating conditions. As stated in 
Section 3.2, measurements should be conducted for a sufficient period to capture a significant 
range of the independent variable(s). Beyond that, no definitive criteria can be provided 
regarding the sufficiency of shorter-term data for annual extrapolation. ASHRAE Research 
Project 1404, Measurement, Modeling, Analysis and Reporting Protocols for Short-term M&V of 
Whole Building Energy Performance provides some guidance. 

In a production environment, the consistency of production will determine this length of time. 
When weather is the independent variable, the season and climate will determine the length of 
time necessary. If seasonal variations in weather are minor, a relatively short time may be 
possible and still cover a wide range of conditions. If seasonal variations are significant, longer 
periods (up to a year) may be advisable. 

Measurements of the dependent and independent variables must cover the same time periods. 

Regression Uncertainty 

Regression uncertainty (also referred to as savings uncertainty) results both from modeling errors 
– explanatory variables are omitted from the model or an incorrect functional form is specified – 
and because people’s unpredictable behaviors affect energy use. Uncertainty in regression 
typically refers to the uncertainty in the output from a regression; uncertainty in the regression 
coefficients is typically referred to in a more explicit manner as the uncertainty of the slope. 

A goal of any M&V plan should be to minimize uncertainty in the savings estimate (regression 
uncertainty). More specifically, the goal should be to make the uncertainty small relative to the 
savings. ASHRAE Guideline 14-2014, Annex B refers to this as the fractional savings uncertainty 
(FSU).14F

15  

Generally, factors that affect regression modeling uncertainty include: 

 Number of points used in the baseline regression 

 Number of points in the post-installation period 

                                                 
15  Refer to ASHRAE Guideline 14-2014, Annex B: Determination of Savings Uncertainty for a more detailed 

discussion of savings uncertainty than is provided here. 
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 Number of significant independent variables included in the regression 

One way to reduce the fractional savings uncertainty is to use more data. Gathering data over a 
longer period, and/or at more frequent intervals, will generally reduce the uncertainty. Note, 
though, that as data is gathered at more frequent intervals, this will increase serial autocorrelation 
– each reading becomes more significantly related to the prior reading. Uncertainty estimates 
must account for this autocorrelation. Costs may be affected by increasing the length of time 
required to collect data or monitoring additional variables. 

Another way to reduce the fractional savings uncertainty is to include more relevant independent 
variables. The t-statistic and p-value should be used to check for the relevance of additional 
independent variables.  

As with all M&V protocols, the emphasis on accuracy needs to be balanced against the level of 
savings and cost. Factors affecting regression uncertainty should be assessed to determine the 
amount of effort and cost needed to increase accuracy.  

4.5.2. Confidence Level and Confidence Interval 
Uncertainty is associated with a given confidence level or probability – for example, “We are 
90% confident that the range 433 and 511 kWh bands the true value,” or, as it is more commonly 
but less accurately expressed, “We are 90% confident that the true value lies between 433 and 
511 kWh.” Confidence level is an input number; for a given sample and regression, the higher 
the confidence level specified, the larger the estimated range that is likely to contain the true 
value that proportion of the time.  

Confidence intervals are a common way to express uncertainty. A 95% confidence level implies 
that there is a 95% chance that the confidence interval resulting from a sample contains the true 
value. Confidence intervals define the range – an uncertainty band – that is expected to band the 
true relationship between the dependent and independent variables, with a certain probability. 
The width of the confidence interval provides some idea of uncertainty about the estimated 
values. For example, the results of a regression analysis of savings may be reported as “500 kWh 
±5% at the 95% confidence level.” This means that there is a 95% chance that the confidence 
interval of 475 to 525 kWh contains the true value of savings. A statement of “500 kWh ±5% at 
the 68% confidence level” means that there is only a 68% chance that the true savings value is 
between these limits, and a 32% chance that it is outside them.  

The practitioner should note that the true value does not fluctuate; rather, because of regression 
uncertainty (and, perhaps, measurement uncertainty), there cannot be complete certainty that the 
true savings value lies within these limits. Confidence limits are the bounds of the confidence 
interval. 

Figure 4-3 provides a graphical representation of confidence intervals. The bounded confidence 
intervals in this figure demonstrate that higher chances an interval contains the true regression 
line require wider intervals than lower chances (that is, the wider the confidence interval, the 
more likely it is to contain the true value). The lines in this figure represent upper and lower 
confidence limits. 
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Figure 4-3: Confidence Intervals for a Regression 

 

4.5.3. Prediction Interval 
Prediction intervals are like confidence intervals, but rather than estimating the distribution of a 
true value (such as average demand), prediction intervals provide a range of values within which 
a single value is expected to fall. As an example of the distinction, a confidence interval can 
provide a range of values within which average demand is expected to fall when the ambient 
temperature is 60ºF. A prediction interval can provide a range of values within which observed 
demand is expected to fall when the ambient temperature is 60ºF. Prediction intervals are wider 
than confidence intervals since, under the identical conditions, it is more difficult to predict the 
value of a future point than it is to predict the distribution of the population mean.  

Figure 4-4 illustrates prediction intervals, adding them to Figure 4-3, above.  
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Figure 4-4: Prediction Intervals for a Regression 

 

4.5.4. Confidence Levels and Savings Estimates 
Savings estimated from regression analyses should describe the range of values corresponding to 
a given confidence level. If a single savings estimate, rather than a range, is required, the savings 
estimate should be the mean point estimate (that is, the value that falls directly in the middle of 
the confidence interval).  

The less scatter, or variability, in the data, the narrower the confidence intervals; greater scatter 
results in winder confidence intervals. However, regardless of the degree of scatter, the 
confidence interval will be wider when requiring a higher probability that it contains the true 
regression line or the true value of savings than when requiring a lower probability. For example, 
the interval estimated for a 99% confidence interval will be wider than it will be for a 95% 
confidence interval. 

For a single value of savings, requiring a greater probability that an interval contains the true 
value results in a wider uncertainty band, which in turn results in a lower estimate of minimum 
likely savings. If a lower probability is acceptable, the uncertainty band will be narrower and the 
estimated minimum savings will be higher. To summarize, the minimum savings estimated is 
higher with a lower confidence level and is lower with a higher confidence level. 
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5. Validating Models 

5.1. Statistical Tests and Measures for the Model 
After developing the regression model, you must assess its goodness of fit. There are many ways 
of testing regression models. The following is an engineering layperson’s description of some of 
the statistical measures and methods used as guidance for validating models. Interim measures 
needed for the statistical tests, such as root mean squared error, are also described in this 
section.  

5.1.1. R-Squared (Coefficient of Determination) 
The coefficient of determination (R2) provides a measure of how well the independent variables 
explain variation in the dependent variable. R2 values range from 0 (indicating none of the 
variation in the dependent variable is associated with variation in any of the independent 
variables) to 1 (indicating all of the variation in the dependent variable is associated with 
variation in the independent variables, a “perfect fit” of the regression line to the data). The rule-
of-thumb for an acceptable model using monthly billing data is an R2  > 0.75.  

If the R2  is low, you may wish to return to Step 5 in the regressions process (see Chapter 3) and 
select additional independent variables that may explain energy use and add them to your model; 
then use the adjusted R2

 (see Section 5.1.2) as a goodness-of-fit test for a multiple regression. 

The R2 value can be thought of as a goodness-of-fit test; but a high R2
 value is not enough to say 

the selected model fits the data well, nor that a low R2 indicates a poor model. Professional 
judgment should be applied, and other fit criteria in addition to R2 should be assessed. For 
CV(RMSE) (see Section 5.1.5), a low value (often interpreted as 10% or 15%) is desirable. For 
example, a model with a low R2

 is acceptable when there is a clear relationship between the 
dependent and independent variables, as evidenced by the following: The scatter of the observed 
y-values around the regression line is low, yet large in relationship to the total scatter of y-values 
from the mean of y, and total y scatter is much smaller than the total scatter of x-values from its 
mean (this results in a low slope estimate). In a situation where the total scatter of y and x 
compared to their means is more comparable, a low R2

 can be acceptable when the estimated 
coefficient of x is significant, despite the unexplained variation; however, there will be relatively 
high uncertainty in the resulting savings estimates. 

The calculations for estimating uncertainty are described in Section 4.5.  

5.1.2. Adjusted R-Squared 
In multiple regression models, the addition of an independent variable will always result in an 
increase in the model’s R2, which means the basic R2 value is not an appropriate indicator of 
model fit. Instead, one should judge model fit using adjusted R2, a value produced by adjusting 
R2, dividing R2 by the associated degrees of freedom (discussed next). The value of the adjusted 
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R2 only increases from one model specification to another if the additional independent 
variable(s) improve the model more than by random chance. 

5.1.3. Degrees of Freedom 
Degrees of freedom (DF) is a common input for statistical calculations. Degrees of freedom is 
the number of values in a calculation that are free to vary and is calculated by subtracting the 
number of parameters in the model from the total number of data points. 

5.1.4. Root Mean Squared Error 
Root mean squared error (RMSE) is an indicator of the scatter, or random variability, in the 
data, and hence is an average of how much an actual y-value differs from the predicted y-value. 
It is the standard deviation of errors of prediction about the regression line.  

5.1.5. Coefficient of Variation of the Root Mean Squared Error  
Coefficient of variation of the root mean squared error – CV(RMSE) – is the RMSE normalized 
by the average y-value. Normalizing the RMSE makes this a nondimensional that describes how 
well the model fits the data. It is not affected by the degree of dependence between the 
independent and dependent variables, making it more informative than R-squared for situations 
where the dependence is relatively low. 

5.1.6. Bias  
Bias refers to any systematic differences between actual energy use and that predicted by a 
regression model. It can result from many parts of the analysis process, including mis-specified 
regression models or a lack of coverage in the independent or dependent variables, among others. 
Energy models should always be checked for bias: Does the model accurately re-create the actual 
baseline energy use on average? Demand models, on the other hand, generally do not require a 
bias check, since demand is not summed over time. Also, demand models will generally not 
require different points to have different weights, so that potential for bias error (from not using a 
weighted regression when one is warranted) is not a concern. Since regression itself minimizes 
the error for each point, there will typically be no need to check bias for a demand model. M&V 
practitioners should take care to understand any unique situations that may require checking for 
bias in a demand model. 

Two indices are defined in ASHRAE Guideline 14 for checking energy model bias. These two 
indices are net determination bias error (or mean bias error) and normalized mean bias error. 
Be forewarned that the Guideline is somewhat confusing, since these two indices are nearly the 
same and the document refers to one of the indices using two different terms.  

Net determination bias is simply the percentage error in the energy use predicted by the model 
compared to the actual energy use. The sum of the differences between actual and predicted 
energy use should be zero. If the net determination bias = 0, then there is no obvious bias. 
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ASHRAE Guideline 14-2014 accepts an energy model if the net determination bias error is less 
than 0.005%. 

Often, bias may be minor, but it still will affect savings estimates. If the savings are relatively 
large compared to the bias, bias may not be important. But in many cases, bias could be 
influential. 

■ Net Determination Bias Error (NDBE): NDBE  

■ Normalized Mean Bias Error (NMBE):  

In the equations above, 𝐸𝐸𝑖𝑖 represents actual energy usage, 𝐸𝐸�𝑖𝑖 represents predicted energy usage, 
𝐸𝐸�, represents average energy usage, 𝑛𝑛 represents the dumber of data points, and 𝑝𝑝 represents the 
number of explanatory variables in the model. Note that the two indices are identical if, in 
NMBE, p = 0. Therefore, the only difference between the two bias error calculations is an 
adjustment for the number of parameters in the model. 

Since there is no averaging occurring, it seems that mean bias error is a misnomer. The net 
determination bias error is simply the percentage error in total energy use predicted by the 
model over the relevant (baseline) time period. In the equation for normalized mean bias error, 
there is an average term in the denominator, but the result is still simply a percent error, which is 
adjusted for the number of parameters in the model. 

Regression models by themselves will not typically have any bias if created properly. However, 
as stated above, there can be bias when using regression models, either because multiple 
categories need to be considered, or because an unweighted regression was used when data 
points should not have equal weights.  

Checking for model bias is an important part of model validation, but there is little value in using 
both of these very similar bias calculations. Keep it simple and just use net determination bias 
error, which provides a net percentage error in the model. 

To clarify some of the confusion between guidelines, we have listed the terms and uses for 
various guidelines below. 

 Normalized Mean Bias Error – is called net mean bias error in the Guidelines for 
Verifying Existing Building Commissioning Project Savings. 

 Net Determination Bias Error – is called by this same term in the Guidelines for 
Verifying Existing Building Commissioning Project Savings. 

 Mean Bias Error – is referenced by ASHRAE Guideline 14 in 6.3.3.4.2.2 Statistical 
Comparison Techniques, but the verbal definition of this term is the same as the equation 
for net determination bias error. 
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 Net Determination Bias – is a term not found in the statistical literature. References on 
the Internet point exclusively to ASHRAE Guideline 14. Consider net determination bias 
as simply a percentage error. 

5.1.7. F-Statistic 
The F-statistic is similar to the t-statistic (described subsequently) but is for the entire model 
rather than for individual variables. When testing a model, the larger the value of F, the better.  

In the Excel Regression tool output, Significance F is the whole-model equivalent of p-value for 
an individual variable. For a simple regression (no change points) with a single independent 
variable, the Significance F value is the same as the p-value for the independent variable. It is the 
probability that the model does not explain most of the variation in the dependent variable. 
Therefore, low values for Excel’s Significance F are desirable. 

5.1.8. VIFs and Multicollinearity 
With multiple regression, models should be checked to avoid multicollinearity. Multicollinearity 
describes a strong relationship between two or more of the independent variables. Broad 
discussion of multicollinearity is beyond the scope of this document. The key point is that 
allowing multicollinearity in a model can create a number of problems and lead to incorrect 
inferences from the model.  

Multicollinearity between two independent variables means that standard errors for coefficients 
are over-emphasized, and therefore larger. The coefficient estimates may change erratically in 
response to minor changes in the model or the data. Even the signs of coefficients can be 
incorrect!  

Multicollinearity may not reduce the predictive power or reliability of the model as a whole; it 
only affects calculations regarding individual predictors. Significant relationships between 
independent variables make it difficult to determine which of the correlated independent 
variables are most significant – that is, which ones most explain variations in the dependent 
variable.  

As a first step to explore the degree of multicollinearity, practitioners should create a correlation 
table between all potential independent variables. If any correlations are exceptionally large (r > 
0.75), then multicollinearity could jeopardize any model that uses those pairs of data. Visualizing 
the relationship between independent variables via scatter plots can also help to determine if 
multicollinearity could be an issue. 

One measure commonly used to determine whether multicollinearity is present in a regression 
model is called a variance inflation factor (VIF; the equation follows). For a variable of interest, 
it’s the ratio of total variability to variability that is not explained by the other variables. After 
creating the regression model, the practitioner should consider calculating VIFs for each 
independent variable in the model. As a rule of thumb, if any VIFs are greater than 10 (meaning 
that less than 90% of the total variability is explained by the other variables), then 
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multicollinearity is a concern. In that case, the practitioner should re-estimate the model without 
the highest-VIF independent variable.  

Note that practitioners should not attempt to use VIFs to assess multicollinearity when the model 
includes interaction terms. As a workaround, practitioners may fit the model without the 
interaction terms and calculate VIFs. If all VIFs are less than 10, then the practitioner can re-
estimate the model with the interaction terms and assume the resulting model will not be 
compromised by multicollinearity. 

Calculating VIFs may prove tedious, but it is not an exceptionally difficult calculation. For 
simplicity, let us assume that your dependent variable is A and you intend to use three 
independent variables: B, C, and D. To calculate the VIF for independent variable B, create a 
regression model where B is the dependent variable, and C and D are the independent variables. 
The VIF for B is a function of the R2 value for this model: 

𝑉𝑉𝑉𝑉𝑉𝑉 =
1

(1 − 𝑅𝑅2) 

Add-ins in Excel that can streamline this process are available. Common statistical analysis 
programs like Stata and R have VIF packages built-in. 

5.2. Statistical Tests and Measures for the Model’s 
Coefficients 

5.2.1. Standard Error of the Coefficient (Intercept or Slope) 
The standard error of the coefficient is like the RMSE, but it is calculated for a single coefficient 
rather than the complete model. The standard error is an estimate of the standard deviation of the 
coefficient. (In other words, the standard error of a regression coefficient helps answer this 
question: How far does the estimated coefficient fall from the true coefficient?) For simple linear 
regression, it is calculated separately for the slope and intercept: there is a standard error of the 
intercept and standard error of the slope. These are necessary to get the t-statistic for each. 

5.2.2. t-Statistic 
The t-statistic is the coefficient (βi) divided by its standard error. Within regression, the t-statistic 
is a measure of the significance for each coefficient (and, therefore, of each independent 
variable) in the model. The larger the t-statistic, the more significant the coefficient is for 
estimating the dependent variable. The coefficient’s t-statistic is compared with the critical 
t-statistic associated with the required confidence level and degrees of freedom. For a 95% 
confidence level and many degrees of freedom (associated with a lot of data), the comparison 
t-statistic is 1.96. For smaller data sets, the critical t value can be computed via the T.INV.2T 
function in Excel (see Table 5-4). Measure the t-statistic for every independent variable used, 
and if the t-statistic is lower than the critical value (such as 1.96) for any variable, consider 
removing that variable from your regression model. Go back to Step 5 (Section 3.5) and consider 
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if a different model specification is more appropriate. Practitioners rarely review the t-statistic of 
the model intercept term when assessing the goodness-of-fit. 

5.2.3. p-value 
Loosely, the p-value is the probability that a coefficient or dependent variable is not related to 
the independent variable. Small p-values, then, indicate that the independent variable or 
coefficient is a significant (important) predictor of the dependent variable in your model. When 
the p-value for an independent variable is below a certain significance level threshold 
(commonly 0.01, 0.05, or 0.10), that independent variable is said to be statistically significant 
(that is, it makes a significant contribution to the estimation of the dependent variable). 

5.3. Out-of-Sample Testing 
One common approach to assessing the accuracy of a regression model is called out-of-sample 
testing. The idea behind out-of-sample testing is to see how accurate your model’s predictions 
are when it encounters new data points. This approach proceeds as follows: 

1. Divide your full data set into two data sets. Put most of the records in a “training” data set 
and place the remainder in a “testing” data set. It is best to randomly assign observations 
from the full data set to the training and testing data sets. As an example, you might 
number the records in your data set from 1 to 365 (assuming you have daily data covering 
a one-year period). Then, using a calculator, Excel, or an online random number 
generator, randomly select a handful of numbers between 1 and 365. The records 
corresponding to the randomly selected numbers will become the testing data set. 

2. Using the training data set, fit your regression model. That is, the estimated coefficients 
will be based entirely on the training data set.  

3. Use the regression model and values of the independent variables for the testing data set 
to predict the dependent variable for the observations in the testing data set. Are the 
predicted values close to the actual values? Ideally, the errors will be relatively small and 
centered around zero. If the errors are, on average, significantly greater or less than zero, 
then the regression model does not make very good predictions.15F

16 Since the goal of a 
regression model is to make accurate predictions in the reporting period, this is 
problematic.  

Of course, it’s possible that the values that were randomly selected to be in the testing data set do 
not represent the full data set very well simply by random chance. This is where Monte-Carlo 

                                                 
16 To determine if the errors differ from 0, on average, practitioners may consider using the errors to construct 

a confidence interval. If 0 is not in the resulting interval, then the model tends to over or under predict. Note 
that a critical t-value (rather than a critical z-value) should be used when making the interval and that the 
size of the interval will be driven by the number of data points in the testing data. 
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cross-validation, which is an iterative process that has grown in popularity with the prowess of 
modern computing technology, comes into play. This technique is described via example below.  

For the example, assume that you have one full year of daily consumption (kWh) and one full 
year of temperature data. Further, assume the relationship between consumption and temperature 
is linear. The size of the testing data set and other specific numbers in the example are for 
expository purposes only and are not intended as guidelines.  

1. Without replacement, randomly select 30 observations from your full data set and place 
them into a testing data set. 

2. Fit the regression model using the remaining 335 observations. 

3. Plug the temperature values from the testing data set into the regression model and 
compare the actual consumption values to the predicted values. For each of the 30 
records, calculate the error (where error = actual – predicted). Take the average error 
across all 30 records. 

4. Repeat steps 1-3 several times. Each time these steps are repeated, a new average error 
(final piece of step 3) is calculated. Use descriptive statistics and histograms to 
summarize these average errors. Ideally, a histogram will show an approximate bell-
shape centered near zero. A wider, flatter bell-shaped distribution is indicative of 
relatively larger prediction errors. A taller, thinner bell-shaped distribution is indicative 
of relatively smaller prediction errors. (Note that the spread in the histogram will also be 
a function of the size of the testing data set, with a larger data set having a narrower 
spread.) 

In practice, statisticians might repeat this process 5,000 times or more. The number of iterations 
is typically a function of computing power, though there may be some diminishing returns; 100 
iterations will provide more informative results than 10 iterations, but 10,000 iterations may 
provide results that are like the results provided with 5,000 iterations. The obvious downside to 
this approach is that implementing it in Excel may prove quite burdensome. It is easier to 
conduct Monte-Carlo cross-validation using a common statistical analysis program such as Stata, 
R, and SAS, but using those programs require some programming expertise (and, in the case of 
Stata and SAS, a financial investment).  

5.4. Analysis of Residuals 
As introduced in Section 3, many of the important assumptions that need to be checked when 
using ordinary least squares regression concern the residuals of the regression model. Violations 
of these assumptions could lead to incorrect conclusions or overstated significance. This section 
discusses methods for checking the residual assumptions. Although checking the validity of 
these assumptions is of essential, residual plots may also reveal other issues. For example, if any 
curvilinear trends show up, then the regression model may need a higher order term.  
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5.4.1. Approximate Normal Distribution 
A histogram of the residuals should reveal a symmetric, bell-shaped distribution (that is, 
Normally distributed) centered at zero. Note that real data will never show perfect symmetry 
around zero, but approximate symmetry is good enough. It is gross departures from normality 
that are concerning. Figure 5-1 shows an example of an approximately Normal distribution. 
(Note that model validity necessitates that the residuals are Normally distributed, but the data 
used to develop the model need not follow a Normal distribution.) 

Figure 5-1: Histogram of Residuals 

 

5.4.2. Constant Variance 
In addition to being approximately Normally distributed with a mean of zero, residuals must 
have a constant variance. In other words, the spread of the residuals should not be larger at one 
end of the range of independent variable values than it is at the other. To check this condition, 
practitioners can create a scatter plot with the residuals plotted on the Y axis and the independent 
variable(s) plotted on the X axis. These plots should show random scatter around zero rather than 
any fanning in/out patterns. Figure 5-2 shows an example where this condition is violated – the 
spread in the residuals increases for larger values of the independent variable. (Note that these 
plots can also be used to check that the residuals are not correlated with the independent 
variables, discussed next.) 
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Figure 5-2: Non-Constant Variance in Residuals 

 

5.4.3. Uncorrelated with Independent Variables 
The residuals should not show a strong correlation with any of the independent variables in the 
regression model. To test the validity of this assumption, practitioners can use the same plots 
examined in the previous section. The scatter plot of the residuals against the independent 
variable(s) should show no linear patterns. The points should be randomly scattered around zero. 
This relationship should also hold between the residuals and the predicted values of the 
dependent variable. The left pane in Figure 5-3 shows residuals plotted against the independent 
variable, and the right pane shows residuals plotted against the predicted values of the dependent 
variable. In both cases, there are no trends – just random scatter around zero. (Note that 
practitioners may see a linear trend when plotting residuals against actual values of the 
dependent variable, but this is not worrisome.) 

Figure 5-3: Residual Plots 
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5.4.4. Independently Distributed 
The residuals from a regression model are said to be independently distributed if the residual at 
time 𝑡𝑡 is uncorrelated with the residual at time 𝑡𝑡 − 1, 𝑡𝑡 − 2, or any other period. If residuals are 
found to be correlated with one another, they are said to suffer from autocorrelation or serial 
correlation. Autocorrelation can be common in energy models, especially with data taken at short 
intervals. For example, Figure 5-4 is a lag plot of residuals from a model using hourly data. It 
charts the residuals (X axis) against the residuals from the prior hour (Y axis). Ideally, this plot 
would reveal no trends. However, that is not the case – the strong relationship shown indicates 
that this model suffers from autocorrelation. For this model, the autocorrelation should be 
accounted for; if not, the uncertainty in the model will be underestimated. 

Figure 5-4: Residual Lag Plot 

 

The impact of autocorrelation is that the effective number of data points is fewer than the actual 
number, since the information in each observation is not completely new. A consequence of this 
is that the variability looks lower than it actually is, making some predictors look significant 
when they are not. In the equations for the statistical tests, the effective number of data points 
needs to be substituted for n, the actual number of data points.  

Practitioners can estimate the effective number of data points (equation shown below) by first 
calculating the first-order autocorrelation coefficient, 𝜌𝜌 (“rho”). This value is simply the 
correlation between the residuals and the residuals for the prior time period. The effective 
number of data points is then given by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴 𝑛𝑛 = (𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛) ∗
(1 − 𝜌𝜌)
(1 + 𝜌𝜌) 
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Annex D of ASHRAE Guideline 14 suggests that autocorrelation can be ignored for values of 𝜌𝜌 
less than 0.5. Practitioners can also find a more dedicated discussion on autocorrelation 
(including potential remedies) in the IPMVP Uncertainty Guide. 

5.4.5. Other Plots 
When analyzing residuals, there are a variety of other plots that practitioners may consider. A 
residual time series plot, for example, plots the residuals against time. Such a plot may help 
identify (1) regression outliers, (2) non-constant variance in the residuals, or (3) autocorrelation. 
Figure 5-5 shows a residual time series plot for a model that uses daily data. Residuals are 
plotted on the Y axis and time (which is the date in this case) is plotted on the X axis. This figure 
is example of an ideal residual time series plot – the spread is constant regardless of the time 
period, residuals tend to hover around zero for the full time period (rather than hover above zero 
for a period of time, then hovering below zero for the remainder of the time), and there are no 
alarming outliers. (Note that a few spikes should be expected just by random chance.) 

Figure 5-5: Residual Time Series Plot 

 

5.5. Tables of Statistical Measures  
Table 5-1 through Table 5-4, below, present the definitions of the relevant statistical measures, 
their equation formulas, and their calculation in Microsoft Excel. 
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Table 5-1: Definitions of Regression Model Statistics 

Regression Model Statistic Equation or Definition 

n Number of points 

p Number of parameters 

df Degrees of freedom, = n - p 

yi Actual y values 

𝒚𝒚�𝒊𝒊 Predicted y values 

Yavg (or 𝒚𝒚�) = �� 𝑦𝑦𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� 𝑛𝑛�  

Xavg (or 𝒙𝒙�) = �� 𝑥𝑥𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� 𝑛𝑛�  

SSQtotal = � ((𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2)
𝑛𝑛

𝑖𝑖=1
 

SSQreg = � ((𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2)
𝑛𝑛

𝑖𝑖=1
 

SSQres (or SSE)  = � ((𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2)
𝑛𝑛

𝑖𝑖=1
 

SSQx = � ((𝑥𝑥𝑖𝑖 − �̅�𝑥)2)
𝑛𝑛

𝑖𝑖=1
 

F = 𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 (𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟/𝐴𝐴𝑑𝑑)⁄  

RMSE = �𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟/𝐴𝐴𝑑𝑑 

CV(RMSE) = 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 𝑦𝑦�⁄  

R-Squared = 𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄  

R-Squared = 1 − (𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄ ) 

Adjusted R-Squared = 1 − �(1 − 𝑅𝑅2) ∗
𝑛𝑛 − 1

𝑛𝑛 − 𝑝𝑝 − 1
� 

Net Determination Bias = � (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
� 𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
�  

Confidence Half-Interval = 𝑡𝑡�𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡𝑠𝑠𝐴𝐴𝑡𝑡𝑠𝑠𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸 ∗ �
1
𝑛𝑛

+
(𝑥𝑥 − �̅�𝑥)2

𝑆𝑆𝑆𝑆𝑄𝑄𝑥𝑥
 

Prediction Half-Interval = 𝑡𝑡�𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡𝑠𝑠𝐴𝐴𝑡𝑡𝑠𝑠𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸 ∗ �1 +
1
𝑛𝑛

+
(𝑥𝑥 − �̅�𝑥)2

𝑆𝑆𝑆𝑆𝑄𝑄𝑥𝑥
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Table 5-2: Microsoft Excel Functions for Regression Model Statistics 

Regression Model Statistic Microsoft Excel Function Excel LINEST (Where Applicable) 

n  = COUNT(XVals)  

p 2  

df = n-p  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 4,2) 

Yavg = AVERAGE(Yvals)  

Xavg = AVERAGE(XVals)  

SSQtotal = DEVSQ(Yvals)  

SSQreg = DEVSQ(YvalsCalc)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 5,1) 

SSQres (or SSE)  = SUM((Yvals-YvalsCalc)^2)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 5,2) 

SSQx = DEVSQ(XVals)  

F = DEVSQ(YvalsCalc)/(SUM((Yvals-
YvalsCalc)^2)/(n-p)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 4,1) 

RMSE = SQRT(SUM((Yvals-
YvalsCalc)^2)/(n-p)) 

 

CV(RMSE) = SQRT(SUM((Yvals-YvalsCalc) 
^2)/(n-p))/AVERAGE(Yvals) 

 

R-Squared = RSQ(Yvals,XVals)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 3,1) 

R-Squared = RSQ(Yvals,XVals)  

Adjusted R-Squared = 1-((1-RSQ(Yvals,XVals))*((n-1)/ 
(n-p-1))) 

 

Net Determination Bias = SUM(Yvals-YvalsCalc)/SUM(Yvals)  

Confidence Half-Interval Evaluated at each x  

Prediction Half-Interval Evaluated at each x  

Table 5-3: Definitions of Coefficient Statistics 

Coefficient Statistic Equation or Definition 

Confidence Level Input required probability that the coefficient is not zero 

t-Statistic, Critical From table 

Intercept = 𝑦𝑦� − 𝐴𝐴𝐴𝐴𝑠𝑠𝑝𝑝𝐴𝐴 ∗ �̅�𝑥 

Slope 
=
∑ �(𝑥𝑥𝑖𝑖 − �̅�𝑥) ∗ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)�𝑛𝑛
𝑖𝑖=1

∑ ((𝑥𝑥𝑖𝑖 − �̅�𝑥)2)𝑛𝑛
𝑖𝑖=1

 

Standard Error of Intercept 
= �

𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 − 𝑝𝑝 ∗ �

1
𝑛𝑛 +

�̅�𝑥2

∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1

� 

Standard Error of Slope = �𝑆𝑆𝑆𝑆𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟/(𝑛𝑛 − 𝑝𝑝)/𝑆𝑆𝑆𝑆𝑄𝑄𝑥𝑥 

t-Statistic for Intercept = 𝑉𝑉𝑛𝑛𝑡𝑡𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝑝𝑝𝑡𝑡/(𝑆𝑆𝑡𝑡𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴 𝐸𝐸𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼 𝑠𝑠𝑑𝑑 𝑉𝑉𝑛𝑛𝑡𝑡𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝑝𝑝𝑡𝑡) 
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Coefficient Statistic Equation or Definition 

t-Statistic for Slope = 𝑆𝑆𝐴𝐴𝑠𝑠𝑝𝑝𝐴𝐴/(𝑆𝑆𝑡𝑡𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴 𝐸𝐸𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼 𝑠𝑠𝑑𝑑 𝑆𝑆𝐴𝐴𝑠𝑠𝑝𝑝𝐴𝐴) 

p-Value for Intercept — 

p-Value for Slope — 

Table 5-4: Microsoft Excel Functions for Coefficient Statistics 

Coefficient Statistic Microsoft Excel Function Excel LINEST (Where Applicable) 

Confidence Level 0.95  

t-Statistic, Critical  = T.INV.2T((1-ConfLvl)/2,n-p)  

Intercept  = INTERCEPT(Yvals,XVals)  

Slope  = SLOPE(Yvals,XVals)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 1,2) 

Standard Error of Intercept  = STEYX(Yvals,XVals)*SQRT 
(1/n+Xavg^2/DEVSQ(XVals)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 1,1) 

Standard Error of Slope  = STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 2,2) 

t-Statistic for Intercept  = (INTERCEPT(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/n+Xavg^2/DEVSQ(XVals))) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 2,1) 

t-Statistic for Slope  = (SLOPE(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals))) 

 

p-Value for Intercept  = TDIST(ABS(INTERCEPT 
(Yvals,XVals))/(STEYX(Yvals, 
XVals)*SQRT(1/n+Xavg^2/ 
DEVSQ(XVals))),n-p,2) 

 

p-Value for Slope  = TDIST(ABS(SLOPE(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals))),n-p,2) 
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6. Example 

6.1. Use of Monthly Billing Data in a 2-Parameter Model 
to Evaluate Whether It Will Make a Satisfactory 
Baseline 

Regression is commonly used to analyze monthly utility data. It is best applied to a package of 
measures whose total savings is a relatively high percentage of the building’s baseline energy 
use. It is important to remember that the energy use of buildings is typically dependent on 
weather. More specifically, it can be dependent on the demand for cooling and heating. This is 
because energy usage is usually higher when it is either very cold (heaters) or very hot (AC 
units), since the temperature is far from the balance point. 

In cases where only cooling or only heating is present or relevant, a simple 2-parameter (straight-
line) regression is often satisfactory. 

Consider the case of schools in the Northwest, especially on the west side of the Cascade 
Mountains. Many schools do not have cooling, and although cooling is not generally needed 
during the school year, heating is. Therefore, a model of energy use versus average ambient 
temperature or heating degree-days (HDD) may be appropriate. 

Usually, degree-days are better than average-ambient-temperatures. An average temperature may 
indicate little need for heating or cooling if it is near the balance point for the building. However, 
a moderate average temperature can be made up of a series of cool temperatures and a series of 
warm temperatures. During the times of cool temperatures, heating is needed. Therefore, 
depending on climate, a better fit will typically be found by using degree-days. On the west side 
of the Cascades in the Northwest, winter temperatures may be relatively constant over a day, and 
almost always below a school building’s balance point, so the greatest difference between 
degree-days and average temperature will be found in the spring and fall months. 

The following analysis estimates the baseline for the electricity use of a group of modular 
classrooms heated by heat pumps. The planned measure is a web-enabled programmable 
thermostat. Prior similar projects have shown savings exceeding 45% of a building’s baseline 
energy use. 

The available data are the monthly electricity energy use (kWh) and ambient temperature during 
the billing period. There are 24 months of data to be used for the baseline. The data to be used 
for the regression will be normalized to average kWh per day in each billing period and average 
heating degree-days per day in each billing period. The base temperature for heating degree-days 
in this example is 65º F. (See Section 6.2 for a discussion of heating degree-days.) 
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The relevant equation is for a common 2-parameter ordinary least squares regression: 

■ Y = β1 + β2 X1 

where: Y  = electricity use per day in the billing period 

 β1  = y-intercept – electricity use (kWh-per-day) for a day with zero heating 
degree-days 

 β2 = slope – how much the energy use increases for a day as the temperature 
decreases below 65º F (kWh-per-day per heating degree-day) 

 X1 = average heating degree-days per day in the billing period 

Table 6-1 provides the data for the project. 

Table 6-1: Example Data for Classroom Heat Pump Project 

End of Billing  
Period 

Billing Period 
Duration in Days 

Billed Usage 
kWh 

HDD in  
Billing Period 

09/24/2007 30 6,080 113 

10/24/2007 30 7,330 311 

11/21/2007 28 7,470 463 

12/19/2007 28 10,000 669 

01/23/2008 35 11,480 877 

02/25/2008 33 11,420 782 

03/26/2008 30 9,970 560 

04/24/2008 29 7,840 561 

05/20/2008 26 6,800 265 

06/21/2008 32 5,980 268 

07/23/2008 32 4,310 73 

08/22/2008 30 3,330 57 

The consumption and heating degree-days are standardized by the number of days in the billing 
period (Table 6-2). 

Table 6-2: Data Standardized by Days in the Billing Period 

End of Billing  
Period 

Billing Period 
Duration in 

Days 

Billed  
Usage  
kWh 

HDD  
in  

Billing Period 

Average kWh  
per Day in 

Billing Period 

Average HDD  
per Day in 

Billing Period 

09/24/2007 30 6,080 113 202.7 3.7 

10/24/2007 30 7,330 311 244.3 10.4 

11/21/2007 28 7,470 463 266.8 16.5 

12/19/2007 28 10,000 669 357.1 23.9 
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End of Billing  
Period 

Billing Period 
Duration in 

Days 

Billed  
Usage  
kWh 

HDD  
in  

Billing Period 

Average kWh  
per Day in 

Billing Period 

Average HDD  
per Day in 

Billing Period 

01/23/2008 35 11,480 877 328.0 25.1 

02/25/2008 33 11,420 782 346.1 23.7 

03/26/2008 30 9,970 560 332.3 18.7 

04/24/2008 29 7,840 561 270.3 19.4 

05/20/2008 26 6,800 265 261.5 10.2 

06/21/2008 32 5,980 268 186.9 8.4 

07/23/2008 32 4,310 73 134.7 2.3 

08/22/2008 30 3,330 57 111.0 1.9 

Table 6-3 provides the Microsoft Excel formulas for the regression. Note that p in the term (n-p) 
refers to the number of parameters, which is two for this simple linear regression.  

Table 6-3: Microsoft Excel Formulas for the Regression 

Output  Formula 

R-squared = RSQ(Yvals,XVals) 

Number of Baseline Points, n = COUNT(YVals) 

CV(RMSE) = SQRT(SUM((Yvals-YvalsCalc)^2)/(n-p))/AVERAGE(Yvals) 

Intercept at HDD=0 = INTERCEPT(Yvals,XVals) 

Slope = SLOPE(Yvals,XVals) 

Table 6-4 provides the Excel output: 

Table 6-4: Microsoft Excel Output for Example Model 

Output  Data 

R-squared = 0.879 

Number of Baseline Points, n = 12 

CV(RMSE) = 11.7% 

Intercept at HDD=0 = 132.24 

Slope = 8.8678 
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Figure 6-1 shows the data graphed, with the regression equation and line included.  

Figure 6-1: Baseline Electricity Use vs. Heating Degree-Days 

 

Next, the uncertainty needs to be calculated. The input confidence level used to calculate the 
t-statistic will be 90%. The t-statistic will be used to get the confidence intervals, evaluated at 
each value of X. To calculate the t-statistic, some intermediate calculations need to be made, as 
shown in Table 6-5. In this table, p is the probability that the dependent variable is not 
significantly related to the independent variable. 

Table 6-5: Microsoft Excel Formulas for the Fit Statistics 

Output  Formula 

Standard Error = STEYX(Yvals,XVals) 

Standard Error – Percent of Average = STEYX(Yvals,XVals) / AvgY 

Critical t-Statistic = TINV(1-ConfLvl,n-p) 

Sum of Squares of Differences: X-avg(X) = DEVSQ(XVals) 

Standard Deviation of the Residuals = STDEV(Residuals) 

t-Statistic = CONFIDENCE(1-ConfLvl,STDEV(Residuals),n) 

p-Value = TDIST(ABS(t_statistic),n-p,2) 

y = 8.8678x + 132.24 
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Table 6-6 provides the Excel outputs for the goodness-of-fit statistics. 

Table 6-6: Microsoft Excel Output for Example Fit Statistics 

Output  Data 

Standard Error = 29.69 

Standard Error – Percent of Average = 11.7%  

Number of Baseline Points, n = 12 

Critical t-Statistic = 12 

Sum of Squares of Differences: X-avg(X) = 1.81 

Standard Deviation of the Residuals = 818 

t-Statistic = 28.3 

p-Value = 13.44 

Below is the equation for calculating the confidence intervals for the regression: 

■ ΔYconfidence = ±( t-statistic)*STEYX(Yvals,XVals)*SQRT(1/n+(X-xAvg)^2/DEVSQ(XVals)) 

Table 6-7 provides the spreadsheet output, including the estimates for the confidence intervals of 
the regression. Min Modeled is the modeled value minus the confidence half-interval. Max 
Modeled is the modeled value plus the confidence half-interval. 

Table 6-7: Example Model Estimates 

Average HDD 
per Day 

in Billing 
Period 

Average kWh  
per Day  

in Billing 
Period 

Modeled 
kWh  

per Day 

Residual 90% 
Confidence 
Half-Interval 

Minimum 
Modeled 

kWh  
per Day 

Maximum 
Modeled 

kWh  
per Day 

3.7 202.7 165.5 37.2 24.3 141.2 189.8 

10.4 244.3 224.2 20.1 16.7 207.5 241.0 

16.5 266.8 278.8 -12.0 16.4 262.4 295.3 

23.9 357.1 344.1 13.1 24.7 319.4 368.8 

25.1 328.0 354.4 -26.4 26.5 327.9 380.8 

23.7 346.1 342.5 3.6 24.5 318.0 366.9 

18.7 332.3 297.7 34.6 18.2 279.6 315.9 

19.4 270.3 303.9 -33.6 18.9 285.1 322.8 

10.2 261.5 222.4 39.1 16.9 205.6 239.3 

8.4 186.9 206.6 -19.7 18.4 188.2 225.1 

2.3 134.7 152.6 -17.9 26.5 126.1 179.0 

1.9 111.0 149.0 -38.0 27.1 121.9 176.1 

Total  3,041.8 3,041.8 0.0 258.9 2,782.8 3,300.7 
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Figure 6-2 provides the scatter chart again, including the lines of 90% confidence intervals. 

Figure 6-2: Baseline Electricity Use vs. Heating Degree-Days with Confidence Intervals 

 

Note that the regression appears to reproduce the baseline totals. However, these values are for 
the average kWh-per-day, not for the total energy use over the year. Yet each point does not 
represent the same number of days; consequently, the best approach would have been to use a 
weighted regression. Because a weighted regression was not used, the model’s bias should be 
checked. 

To complete the model and check the bias, the modeled values for kWh-per-day are multiplied 
by the number of days in the billing period. The actual kWh values are reproduced in Table 6-8 
for comparison with the modeled values. 
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Table 6-8: Example Model Estimates with Actual Observations 

Average 
HDD per 

Day 
in Billing 

Period 

Average kWh  
per Day  

in Billing 
Period 

Modeled 
kWh  

per Day 

Residual 90% 
Confidence 

Half-
Interval 

Minimum 
Modeled 

kWh  
per Day 

Maximum 
Modeled 

kWh  
per Day 

Actual 
kWh  

Modeled 
kWh  

3.7 202.7 165.5 37.2 24.3 141.2 189.8 6,080 4,964 

10.4 244.3 224.2 20.1 16.7 207.5 241.0 7,330 6,727 

16.5 266.8 278.8 -12.0 16.4 262.4 295.3 7,470 7,807 

23.9 357.1 344.1 13.1 24.7 319.4 368.8 10,000 9,634 

25.1 328.0 354.4 -26.4 26.5 327.9 380.8 11,480 12,403 

23.7 346.1 342.5 3.6 24.5 318.0 366.9 11,420 11,301 

18.7 332.3 297.7 34.6 18.2 279.6 315.9 9,970 8,932 

19.4 270.3 303.9 -33.6 18.9 285.1 322.8 7,840 8,814 

10.2 261.5 222.4 39.1 16.9 205.6 239.3 6,800 5,783 

8.4 186.9 206.6 -19.7 18.4 188.2 225.1 5,980 6,612 

2.3 134.7 152.6 -17.9 26.5 126.1 179.0 4,310 4,883 

1.9 111.0 149.0 -38.0 27.1 121.9 176.1 3,330 4,469 

Total  3,041.8 3,041.8 0.0 258.9 2,782.8 3,300.7 92,010 92,331 

So, what is the bias in the model? 

■ Net Determination Bias Error (NDBE): NDBE  

NDBE = (92,331 – 92,010) / 92,331 

NDBE = 0.3% 

The model predicts 0.3% higher energy use than the actual data. 

ASHRAE Guideline 14 does not accept a model with bias >0.005%, so this model would be 
rejected. However, the uncertainty in the model is much, much greater than the bias, and the 
savings are expected to be much, much greater than the uncertainty. Thus, this model is 
acceptable: 

■ Modeled Uncertainty = ± (92,331 – 84,436) / 92,331 = ± 8.6%. 

The expected energy savings for this measure is at least 45%. Since the uncertainty is low 
relative to the expected savings, this baseline model would be acceptable for projecting energy 
use under post-implementation conditions and could be used in the calculation of energy savings. 

∑
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6.2. Background on Heating and Cooling Degree-Days 
(HDD and CDD)  

Heating degree-days are a measure of how much cold weather there is in a specific period. The 
average daily temperature is determined for each day. The average temperature is then compared 
to a base temperature (often 65º F). If the average temperature (when only daily data are 
available, typically the average of the daily high and the daily low) is 55º F for a day, and the 
base is 65º F, then that day contributes 10 HDD to the period. The HDD for each day in the 
period (typically a calendar month or a utility billing period) are summed to create a single data 
point for the month. If the temperature difference for a day is negative, it is recorded as 0.  

■ HDDn =  

Note that while HDD and CDD are often reported with a base or balance point of 65º F, results 
can often be improved by experimenting with different base temperatures. The base temperature 
should generally be the average temperature at which the building does not require any heating 
or cooling – the balance point temperature. For most commercial buildings, this temperature will 
typically be between 55° and 60º F, depending on building size, operating schedule, and other 
parameters. If regression models are created separately for occupied and unoccupied periods, the 
balance point temperature will be different for each: for the occupied period, it may be near 
55º F, and for the unoccupied period it may be near 65º F. 
 

( )
+

∑ −
n

i
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7. Minimum Reporting Requirements 
This document is a reference guide, a companion to the M&V protocols. Below are the minimum 
reporting requirements for the use of regressions within protocols. The overall M&V approach 
should be described according to the minimum reporting requirements of the protocol used. 
Please see the protocols for minimum reporting requirements. 

These are the essential reporting requirements for regressions within an M&V plan and 
verification report: 

 Data: variables, interval of observation – such as monthly, number of observations, or 
length of measurement period 

 Model: the proposed or final model and alternative models proposed or tested (the 
verification report should include estimated model parameters) 

 Model Statistics: statistics for assessing goodness of fit (proposed and, in the verification 
report, calculated statistics for final model) 

 Discussion: why the final model was selected or weaknesses of the alternative models 
tested 
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Appendix: Glossary of Statistical Terms 
This Glossary provides definitions for the statistical terms used in this Regression Reference 
Guide. Additional M&V terms are defined in the companion document Glossary for M&V: 
Reference Guide.  

Accuracy: An indication of how close the measured value is to the true value of the quantity in 
question. Accuracy is not the same as precision. 

Adjusted R-square (
2

R ): A modification of R2 that adjusts for the number of independent 
variables (explanatory terms) in a model. The adjusted R2 only increases if the additional 
independent variables improve the model more than by random chance. It is calculated by taking 
R2 and dividing it by the associated degrees of freedom. Or as described below: 

𝑅𝑅�2 = 1 −
𝑅𝑅𝑆𝑆𝐸𝐸
𝑅𝑅𝑆𝑆𝑀𝑀

 

Autocollinearity: The serial correlation over time of predictor values in a time series model. To 
calculate autocollinearity, R-squared is first calculated for the correlation between the residuals 
and the residuals for the prior period. The autocorrelation coefficient ρ is then the square root of 
this value.16F

17 Autocollinearity is calculated as: 

2 2

( )( )

( ) ( )
i ii

i ii i

x x y y

x x y y
ρ

− −
=

− −

∑
∑ ∑  

Categorical Variables: Variables that have discrete values and are not continuous. Categorical 
variables include things like daytype (weekday or weekend, or day of week), occupancy 
(occupied or unoccupied), and equipment status (on or off). For example, occupancy (occupied 
or unoccupied) is a categorical variable, while number of occupants is a continuous variable. 

Coefficient of Variation (CV): An indication of how much variability or randomness there is 
with any given data set. It quantifies variation within the population relative to the average and is 
dimensionless. The larger it is, the more variation there is in the population relative to the 
average. It is calculated as the ratio of the standard deviation to the average:  

𝐶𝐶𝑉𝑉 =
𝜎𝜎
�̅�𝑥

 

                                                 
17  Note, the English spelling of the Greek letter ρ is rho, not to be confused with “p.” 
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Coefficient of Variation of the Root-Mean Squared Error [CV(RMSE)]: A measure that 
describes how much variation or randomness there is between the data and the model, calculated 
by dividing the root-mean squared error (RMSE) by the average y-value. It is calculated as: 

𝐶𝐶𝑉𝑉(𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸) =
1
𝑦𝑦�
�
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

(𝑛𝑛 − 𝑝𝑝) �
1/2

 

Confidence Interval: A range of uncertainty expected to contain the true value within a 
specified probability. The probability is referred to as the confidence level.  

Confidence Level: A population parameter used to indicate the reliability of a statistical 
estimate. The confidence interval expresses the assurance (probability) that given correct model 
selection, the true value of interest resides within the proportion expressed by the confidence 
interval. 

Continuous Variables: Variables that are numeric and can have any value within the range of 
encountered data (that is, measurable things such as energy usage or ambient temperature). 

Dependent Variable: The variable that changes in relationship to alterations of the independent 
variable. In energy efficiency, energy usage is typically treated as the dependent variable, 
responsive to the manipulation of conditions (independent variables). 

Homoscedasticity: (Also known as Homogeneity of Variance.) Within linear regression, this 
means that the variance of the dependent values around the regression line is constant for all 
values of the independent variable. 

Independent Variable: Also termed an explanatory or exogenous variable; a factor that is 
expected to have a measurable impact on the dependent, or outcome variable (such energy use of 
a system or facility). 

Mean: The most widely used measure of the central tendency of a series of observations. The 
Mean (𝑌𝑌) is determined by summing the individual observations (𝑌𝑌𝑖𝑖) and dividing by the total 
number of observations (𝑛𝑛), as follows: 

  

Mean Bias Error (MBE): The Mean Bias Error is an indication of overall bias in a regression 
model. Positive MBE indicates that regression estimates tend to overstate the actual values. It is 
calculated as: 

𝑅𝑅𝑀𝑀𝐸𝐸 =  
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)

𝑛𝑛
 

Mean Model: (Also known as a Single Parameter Model.) A model that estimates the mean of 
the dependent variable. 
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Multicollinearity: A statistical occurrence where two or more predictor variables in a multiple 
regression model are highly correlated (there are exact linear relationships between two or more 
explanatory variables). Allowing multicollinearity in a model can lead to incorrect inferences 
from the model. 

Net Bias: Where there exists net bias, modeled or predicted energy usage will differ from actual 
energy usage for the period examined. 

Net Determination Bias Error (NDBE): The percentage error in the energy use predicted by 
the model compared to the actual energy use. See Normalized Mean Bias Error. 

𝑁𝑁𝑁𝑁𝑀𝑀𝐸𝐸 = 100 ∗  
∑ �𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑖𝑖�𝑖𝑖

∑ 𝐸𝐸𝑖𝑖𝑖𝑖
 

Normal Distribution: A continuous and symmetric population distribution in which the 
frequency of occurrence decreases exponentially as values deviate from the mean (or central) 
value. In a regression equation, the distribution of errors (residuals) at a given value of x is a 
normal distribution and the mean of residuals is zero. It is also referred to as a Gaussian or bell 
curve. 

Normalized Mean Bias Error (NMBE): Similar to Net Determination Bias but adjusted for the 
number of parameters in the model. The Normalized Mean Bias Error is an indication of overall 
bias in a regression model. Positive MBE indicates that regression estimates tend to overstate the 
actual values. It is calculated as: 

𝑁𝑁𝑅𝑅𝑀𝑀𝐸𝐸 = 100 ∗
∑ �𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑖𝑖�𝑖𝑖

(𝑛𝑛 − 𝑝𝑝) ∗ 𝐸𝐸�
 

Ordinary Least Squares (OLS): A mathematical procedure to solve for the set of coefficients 
that minimize the sum of the squared differences between the raw data and the fitted linear trend. 
OLS is the most common form of regression modeling and the default approach in most software 
packages. 

Outliers: Data points that do not conform to the typical distribution. Graphically, an outlier 
appears to deviate markedly from other members of the same sample. 

Overspecified Model: A model with added independent variables that are not statistically 
significant or are possibly correlated with other independent variables. 

p-value: The probability that a coefficient or dependent variable is not related to the independent 
variable. Small p-values, then, indicate that the independent variable or coefficient is a 
significant (important) predictor of the dependent variable in a regression model. The p-value is 
an alternate way of evaluating the t-statistic for the significance of a regression coefficient and is 
expressed as a probability. 
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Precision: The indication of the closeness of agreement among repeated measurements; a 
measure of the repeatability of a process. Any precision statement about a measured value must 
include a confidence level. A precision of 10% at 90% confidence means that we are 90% certain 
the measured values are drawn from samples that represent the population and that the “true” 
value is within ±10% of the measured value. Because precision does not account for bias or 
instrumentation error, it is an indicator of predicted accuracy only given the proper design of a 
study or experiment. 

R-Squared (R2): (Also known as the Coefficient of Determination.) R2 is the measure of how 
well future outcomes are likely to be predicted by the model. It illustrates how well the 
independent variables explain variation in the dependent variable. R2 values range from 0 
(indicating none of the variation in the dependent variable is associated with variation in any of 
the independent variables) to 1 (indicating all the variation in the dependent variable is 
associated with variation in the independent variables, a “perfect fit” of the regression line to the 
data). It is calculated as: 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

Regression Analysis: A mathematical technique that extracts parameters from a set of data to 
describe the correlation relationship of measured independent variables and dependent variables. 

Regression Model: A mathematical model based on statistical analysis where the dependent 
variable is regressed on the independent variables which are said to determine its value. In so 
doing, the relationship between the variables is estimated from the data used. A simple linear 
regression is calculated as: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖, where i = 1,…, n 

Reliability: When used in energy evaluation, refers to the likelihood that the observations can be 
replicated. 

Residual: The difference between the predicted and actual value of the dependent variable. In 
other words, whether a point is above or below the regression line is a matter of chance and is 
not influenced by whether another point is above or below the line. Estimated by subtracting the 
data from the sample mean: 

ˆ iX Xε = −  
Root Mean Squared Error (RMSE): An indicator of the scatter, or random variability, in the 
data, and hence is an average of how much an actual y-value differs from the predicted y-value. 
It is the standard deviation of errors of prediction about the regression line. The RMSE is 
calculated as: 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸�𝜃𝜃�� = �𝑅𝑅𝑆𝑆𝐸𝐸(𝜃𝜃�) =  �𝐸𝐸(�𝜃𝜃� − 𝜃𝜃�
2

) 



 

Regression for M&V: Reference Guide 
53 

Standard Deviation (s): The square root of the variance, which brings the variability measure 
back to the units of the data. (With variance units in kWh2, the standard deviation units are 
kWh.) The sample standard deviation (s) is calculated as: 

  

Standard Error (SE): An estimate of the standard deviation of the coefficient. For simple linear 
regression, it is calculated separately for the slope and intercept: there is a standard error of the 
intercept and standard error of the slope. SE is calculated as:  

𝑆𝑆𝐸𝐸𝑥𝑥 =
𝐴𝐴
√𝑛𝑛

 

Standard Error of the Coefficient: Similar to the RMSE but calculated for a single coefficient 
rather than the complete model. This measures the degree to which the coefficient estimate may 
change if the full process was to be repeated. 

t-statistic: A measure of the probability that the value (or difference between two values) is 
statistically valid. The calculated t-statistic can be compared to critical t-values from a t-table. 
The t-statistic is inversely related to the p-value; a high t-statistic (t>2) indicates a low 
probability that random chance has introduced an erroneous result. Within regression, the 
t-statistic is a measure of the significance for each coefficient (and, therefore, of each 
independent variable) in the model. The larger the t-statistic, the more significant the coefficient 
is to the estimation of the dependent variable. The t-statistic is calculated as: 

𝑡𝑡𝛽𝛽� =
�̂�𝛽 − 𝛽𝛽0
𝐴𝐴. 𝐴𝐴. (�̂�𝛽)

 

Uncertainty: The range or interval of doubt surrounding a measured or calculated value within 
which the true value is expected to fall within some stated degree of confidence. Uncertainty in 
regression analysis can come from multiple sources, including measurement uncertainty and 
regression uncertainty. 

Variance (S2): A measure of the average distance between each of a set of data points and their 
mean value, and it is equal to the sum of the squares of the deviation from the mean value, or the 
square of the standard deviation. Variance is computed as follows: 

𝑆𝑆2 =  
∑(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2

𝑛𝑛 − 1
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Weighted Regression: A form of regression used when individual data points are weighted to 
represent more data than other points. An example is billing-period analysis, where billing 
periods may have different numbers of days and billing periods with more days are adjusted 
upward in weight relative to periods with fewer days. (Also, a form of regression used when data 
do not have equal weight in a model because error is not expected to be constant across all 
observations.) 
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